Aug 14 – 18, 2023
Europe/Berlin timezone

[P67]Comparative analysis of current and future hydrogen storage technologies for the transport sector

Not scheduled
15m
Mechanical and Aerospace Technology Poster(Wed)

Speaker

Hyunju Park (Technische Universitaet Dresden)

Description

In order to use hydrogen as fuel, it must be stored in transportation. The method of storing hydrogen can be divided into a physical storage method and a material-based storage method. In physical hydrogen storage methods, there are compressed gaseous hydrogen (CGH2), liquid hydrogen (LH2) and cryo-compressed hydrogen (CcH2). CGH2 can be handled easily, but the storage density is low. High density is possible with LH2 method but requires a large amount of energy in the liquefaction process and additionally has losses contributing from the boil-off effect. CcH2 has the highest storage density in the supercritical state. In material-based storage methods, there are liquid organic hydrogen carrier (LOHC), metal hydride (MeH), Ammonia (NH3) and Metal-Organic Frameworks. Various criteria were applied to assess the storage methods and CcH2 is shown to be preferable as the most successful storage method. The specific configuration of the CcH2 in combination with CGH2 is examined, given that the best storage technology in various transport sectors is heavily dependent on ranges and masses.

References

[1] Holleman, A. F., Wiberg, E., and Wiberg, N., 2007, Lehrbuch Der Anorganischen Chemie, de
Gruyter, Berlin.
[2] Mortimer, C. E., Müller, U., and Georg Thieme Verlag KG, 2020, Chemie Das Basiswissen Der
Chemie, Georg Thieme Verlag, Stuttgart.
[3] Schill, J., 2018, “Vergleich verschiedener Methoden zur Speicherung von Wasserstoff,” Thesis,
Wien.
[4] Hirscher, M., 2010, “Handbook of Hydrogen Storage New Materials for Future Energy Storage.”
[5] “Shell Wasserstoffstudie” [Online]. Available: https://www.shell.de/medien/shellpublikationen/
shell-hydrogen-study.html. [Accessed: 26-Oct-2021].
[6] Ren, J., Musyoka, N. M., Langmi, H. W., Mathe, M., and Liao, S., 2017, “Current Research Trends
and Perspectives on Materials-Based Hydrogen Storage Solutions: A Critical Review,” Int. J.
Hydrog. Energy, 42(1), pp. 289–311.
[7] Stolten, D., and Emonts, B., 2016, Hydrogen Science and Engineering Materials, Processes, Systems
and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Berlin.
[8] Barthelemy, H., Weber, M., and Barbier, F., 2017, “Hydrogen Storage: Recent Improvements
and Industrial Perspectives,” Int. J. Hydrog. Energy, 42(11), pp. 7254–7262.
[9] Töpler, J., and Lehmann, J., 2014, Wasserstoff Und Brennstoffzelle Technologien Und
Marktperspektiven, Springer Vieweg, Berlin.
[10] “Hydrogen – Analysis,” IEA [Online]. Available: https://www.iea.org/reports/hydrogen.
[Accessed: 19-Nov-2021].
[11] Klier, J., Rattey, M., Kaiser, G., Klupsch, M., Kade, A., Schneider, M., and Herzog, R., “A New
Cryogenic High-Pressure H2 Test Area: First Results,” p. 6.
[12] Gupta, R. B., Basile, A., and Veziroğlu, T. N., 2016, Compendium of Hydrogen Energy Volume 2
Hydrogen Storage, Distribution and Infratructure / Edited by Ram B. Gupta, Angelo Basile, T. Nejat
Veziroğlu, Elsevier, WP Woodhead Publishing, Amsterdam.
[13] “Services,” H2Mobility [Online]. Available: https://h2-mobility.de/. [Accessed: 29-Nov-2021].
[14] Aceves, S. M., Espinosa-Loza, F., Ledesma-Orozco, E., Ross, T. O., Weisberg, A. H., Brunner, T.
C., and Kircher, O., 2010, “High-Density Automotive Hydrogen Storage with Cryogenic Capable
Pressure Vessels,” Int. J. Hydrog. Energy, 35(3), pp. 1219–1226.
[15] von Wild, J., Freymann, R., and Zenner, M., 2008, “Potentiale von Alternativen Wasserstoff-
Speicherungstechnologien,” VDI-Berichte, (2030).
[16] Sterner, M., and Stadler, I., eds., 2017, Energiespeicher - Bedarf, Technologien, Integration,
Springer Berlin Heidelberg, Berlin, Heidelberg.
[17] 2021, “Hydrogenious LOHC Technologies and Østensjø Group Join Forces and Tread a Novel
Path towards Safe Zero-Emission Shipping,” Østensjø [Online]. Available:
https://ostensjo.no/hydrogenious-lohc-technologies-and-ostensjo-group-join-forces-andtread-
a-novel-path-towards-safe-zero-emission-shipping/. [Accessed: 28-Jan-2022].
[18] Klein, H.-P., 2007, “Betriebsverhalten einer zweistufigen Metallhydrid-Sorptionsanlage zur
Kälteerzeugung,” Operation behaviour of a double-stage metal hydride sorption device for
cold generation.
[19] Wenger, D., 2009, Metallhydridspeicher Zur Wasserstoffversorgung Und Kühlung von
Brennstoffzellenfahrzeugen, VDI-Verlag.
[20] Godula-Jopek, A., Jehle, W., and Wellnitz, J., 2012, Hydrogen Storage Technologies New Materials,
Transport and Infrastructure, Wiley-VCH, Weinheim.
[21] Witte, J., 2017, “Power to Ammonia-Feasibility Study for the Value Chains and Business Cases
to Produce CO-Free Ammonia Suitable for Various Market Applications.”
[22] Murray, L. J., Dinca, M., and Long, J. R., 2009, “Hydrogen Storage in Metal–Organic
Frameworksw,” Chem Soc Rev, 38, pp. 1294–1314.
[23] Hindelang, K., “Funktionalisierung metallorganischer Netzwerke mittels prä- und
postsynthetischer Methoden,” p. 223.
[24] Schoedel, A., Ji, Z., and Yaghi, O. M., 2016, “The Role of Metal–Organic Frameworks in a Carbon-
Neutral Energy Cycle,” Nat. Energy, 1(4), pp. 1–13.
Literaturverzeichnis
II
[25] Stallmach, F., Gröger, S., Künzel, V., Kärger, J., Yaghi, O. M., Hesse, M., and Müller, U., 2006,
“NMR-Untersuchungen Zur Diffusion von Kohlenwasserstoffen Im Metall-Organischen
Netzwerk MOF-5,” Angew. Chem., 118(13), pp. 2177–2181.
[26] Veenstra, M., Purewal, J., Xu, C., Yang, J., Blaser, R., Sudik, A., Siegel, D., Ming, Y., Liu, D., Chi, H.,
Gaab, M., Arnold, L., and Muller, U., 2015, Ford/BASF/UM Activities in Support of the Hydrogen
Storage Engineering Center of Excellence, Hydrogen Storage Engineering Center of Excellence-
Ford/BASF/UM, Ford Motor Company, Detroit, MI (United States).
[27] 2009, Regulation (EC) No 79/2009 of the European Parliament and of the Council of 14 January 2009
on Type-Approval of Hydrogen-Powered Motor Vehicles, and Amending Directive 2007/46/EC (Text
with EEA Relevance), 32009R0079.
[28] Zhang, J. Z., Li, J., Li, Y., and Zhao, Y., 2014, Hydrogen Generation, Storage and Utilization, John
Wiley & Sons.
[29] Li, M., Bai, Y., Zhang, C., Song, Y., Jiang, S., Grouset, D., and Zhang, M., 2019, “Review on the
Research of Hydrogen Storage System Fast Refueling in Fuel Cell Vehicle,” Int. J. Hydrog. Energy,
44.
[30] Ag, L., “Linde Kupplung und Betankungssystem Leistung und Meßergebnisse,” p. 16.
[31] Ahluwalia, R. K., Hua, T. Q., and Peng, J. K., 2012, “On-Board and Off-Board Performance of
Hydrogen Storage Options for Light-Duty Vehicles,” Int. J. Hydrog. Energy, 37(3), pp. 2891–2910.
[32] Ludwig, M. and Technische Universität Dresden, 2020, Analysis of Hydrogen-Based Energy
Storage Pathways, Dresden.
[33] Paster, M. D., Ahluwalia, R. K., Berry, G., Elgowainy, A., Lasher, S., McKenney, K., and Gardiner,
M., 2011, “Hydrogen Storage Technology Options for Fuel Cell Vehicles: Well-to-Wheel Costs,
Energy Efficiencies, and Greenhouse Gas Emissions,” Int. J. Hydrog. Energy, 36(22), pp. 14534–
14551.
[34] “Toyota Mirai FCV_Posters - Google Search” [Online]. Available:
https://www.google.com/search?q=Toyota+Mirai+FCV_Posters&rlz=1C1UEAD_koDE958DE958
&oq=Toyota+Mirai+FCV_Posters&aqs=chrome..69i57.1313j0j7&sourceid=chrome&ie=UTF-8.
[Accessed: 26-Jan-2022].
[35] “BMW 5 Series GT FCEV Hydrogen Fuel Cell Prototype Review,” Auto Express [Online]. Available:
https://www.autoexpress.co.uk/bmw/5-series/92090/bmw-5-series-gt-fcev-hydrogen-fuelcell-
prototype-review. [Accessed: 26-Jan-2022].
[36] Eun-Jung Kim, 2021, “Fleets of Hyundai Xcient Fuel Cell Trucks Exceed 1 Mln Km Driving,”
Yonhap News Agency [Online]. Available: https://en.yna.co.kr/view/AEN20210702002500320.
[Accessed: 26-Jan-2022].
[37] “Hyundai Xcient Fuel Cell FCEV Brennstoffzellen Lkw | AUTO MOTOR UND SPORT” [Online].
Available: https://www.auto-motor-und-sport.de/elektroauto/hyundai-xcient-fuel-cell-fcevbrennstoffzelle-
lkw-wasserstoff/. [Accessed: 26-Jan-2022].
[38] 2020, “Hyundai Motors liefert erste XCIENT Fuel Cell Trucks in der Schweiz aus und kündet die
Expansion auf globalen Märkten an,” Hyundai Hydrog. Mobil.
[39] Gurz, M., Baltacıoğlu, E., Hameş, Y., and Kaya, K., 2017, “The Meeting of Hydrogen and
Automotive: A Review,” Int. J. Hydrog. Energy, 42, pp. 23334–23346.
[40] “Urbane Micro-Mobile: Kleine Autos für große Städte” [Online]. Available:
https://www.handelsblatt.com/mobilitaet/motor/urbane-micro-mobile-kleine-autos-fuergrosse-
staedte/13781738.html. [Accessed: 25-Jan-2022].
[41] “Path-to-Hydrogen-Competitiveness_Full-Study - Google Search” [Online]. Available:
https://www.google.com/search?q=Path-to-Hydrogen-Competitiveness_Full-
Study&rlz=1C1UEAD_koDE958DE958&oq=path&aqs=chrome.1.69i57j69i59j0i512j46i512l2j0i5
12l2j69i60.3352j0j7&sourceid=chrome&ie=UTF-8. [Accessed: 24-Jan-2022].
[42] Hommen/SP-X, M., 2019, “Deutsches E-Auto fü r urbane Mobilität: Der smarte Sven will die
Stadt erobern,” firmenauto [Online]. Available: https://www.firmenauto.de/deutsches-e-autofuer-
urbane-mobilitaet-der-smarte-sven-will-die-stadt-erobern-10720685.html. [Accessed: 25-
Jan-2022].
Literaturverzeichnis
III
[43] “Kangoo Z.E. Hydrogen and Master Z.E. Hydrogen - Renault Group” [Online]. Available:
https://www.renaultgroup.com/en/news-on-air/news/kangoo-z-e-hydrogen-and-master-z-ehydrogen/.
[Accessed: 29-Jan-2022].
[44] “Shell Nutzfahrzeug-Studie” [Online]. Available: https://www.shell.de/medien/shellpublikationen/
shell-nutzfahrzeug-studie.html. [Accessed: 26-Jan-2022].
[45] “Stadtbus.De” [Online]. Available: http://stadtbus.de/2012/einsatz_hybrid.htm. [Accessed: 26-
Jan-2022].
[46]“Brennstoffzellen-Bus: Mercedes Citaro FuelCell Hybrid (2009),” Motor1.com [Online]. Available:
https://de.motor1.com/news/163654/mercedes-citaro-fuelcell-hybrid-stadtbus-mitbrennstoffzellen/.
[Accessed: 26-Jan-2022].
[47] 2016, “Der erste Wasserstoffzug mit Brennstoffzelle rollt an - ingenieur.de,” Ingenieurde -
Jobbörse Nachrichtenportal Für Ingenieure [Online]. Available:
https://www.ingenieur.de/technik/fachbereiche/verkehr/der-wasserstoffzug-brennstoffzellerollt-
an/. [Accessed: 24-Jan-2022].
[48] 2021, “Wasserstoff-Zug: Weltweit größ te Flotte entsteht in Deutschland - ingenieur.de,”
Ingenieurde - Jobbörse Nachrichtenportal Für Ingenieure [Online]. Available:
https://www.ingenieur.de/technik/fachbereiche/verkehr/der-weltweit-erste-wasserstoff-zugfaehrt-
im-regulaeren-linienbetrieb/. [Accessed: 24-Jan-2022].
[49] “Velis Electro EASA TC – Pipistrel Aircraft.”
[50] Henderson, C., “The Hydrogen Revolution in the Skies” [Online]. Available:
https://www.bbc.com/future/article/20210401-the-worlds-first-commercial-hydrogen-plane.
[Accessed: 27-Jan-2022].
[51] “Q30 E-Boot - 100% elektrisch und hochmodern” [Online]. Available:
https://www.boot.de/de/Aktuelles/Motorboote_Ausrüstung/Neue_Motorboote_-
Yachten/Sportboote_Runabouts/Q30_E-Boot_-_100_elektrisch_und_hochmodern. [Accessed:
30-Jan-2022].
[52] “ELEKTRA,” E4ships - Brennst. Bord Von Schiffen [Online]. Available:
https://www.e4ships.de/deutsch/binnenschifffahrt/elektra/. [Accessed: 30-Jan-2022].
[53] “Schiffe Ohne Emissionen Dank Ammoniak Und Wasserstoff” [Online]. Available:
https://www.nzz.ch/wissenschaft/schifffahrt-ohne-suende-ld.1635440. [Accessed: 31-Jan-
2022].

Keywords H2, CGH2, CCH2, LH2

Presentation materials

There are no materials yet.